

The United States Government Shutdown: A Game Theoretical Analysis

Laurence DECAIX
Naushita JAISING
Eoghain MITCHISON
Clémentine PELLEGRIN
Pierre VERCUEIL

Presented by Eoghain MITCHISON

Game Theory in the International Arena – PSIA 19th November 2013

- Introduction
- The Framework
- 1. One-Off Simultaneous Game
- 2. Infinitely Repeated Game with Decreasing Payoffs
- Conclusion

Introduction

The two chambers of Congress failed to reach an agreement over the government's debt ceiling

→ 1st of October 2013: government shutdown

Negotiations over the removal of the Affordable Care Act

16 days of shutdown 17rounds of votes

→ Republicans compromised

The Framework

- Two players
 - The Democratic Party (Senate)
 - The Republican Party (House of Representatives)
- Assumption
 - Individual representatives will vote in accordance to the official party line
- Two-step analysis
 - 1. Before the shutdown (standard fixed payoffs)
 - 2. During the shutdown (dynamic payoffs)

1. One-Off Simultaneous Game

Two possible simultaneous moves, for both players

- Compromise
- Refuse to compromise

... A Prisoner's Dilemma

Players' Payoffs

	Republican payoff	Democrat payoff
λ	The Affordable Care Act is scrapped	Full funding for The Affordable Care Act
α	Reduced Affordable Care Act, retention of constituency support, and no 'loss of face'	-
β	-	Partial funding for The Affordable Care Act, but accompanying loss of public opinion (Failure to deliver fully on election promises)
3	Government shutdown	Government shutdown
δ	Full funding for The Affordable Care Act	No funding for The Affordable Care Act

The Game Matrix

Utility values: $\lambda > \alpha > \beta > \epsilon > \delta$

		Democrats	
		Compromise	Refuse
	Compromise	α,β	δ,λ
Republicans	Refuse	λ,δ	ε,ε

2. Infinitely Repeated Game with Decreasing Payoffs

Deteriorating economic conditions

→ Continously increasing pressure on players

→ Dynamically decreasing payoffs

Assumptions (1)

• ε is now time-dependent

• BUT: its utility value diminishes at *different* rates for each player

 The decrease in utility is given by Φ for Republicans, and Ψ for Democrats

Assumptions (2)

The factors Φ and Ψ are themselves functions of:

E: The negative externalities to the economy created by the shutdown

P_D: The negative public opinion directed at the Democrats

P_R: The negative public opinion directed at the Republicans

 $P_R > P_D$ P_R increases faster than P_D E is equal for both players

Assumptions (3)

The Republican's rate of decrease Φ is then:

$$\Phi f(E, P_R)$$
 E and P_R are negatively related with Φ
$$\Phi < 0$$

And the Democrats' rate of decrease Ψ is then:

$$\Psi f(E, P_D)$$
 E and P_D are negatively related with Ψ
$$\Psi < 0$$

 $\Phi < \Psi$ in each game (that is, Φ is more negative)

The Game Matrix

Utility values : $\lambda > \alpha > \beta > \epsilon > \delta$

$$\varepsilon^{\Phi} = \varepsilon + n\Phi$$

$$\varepsilon^{\Psi} = \varepsilon + n\Psi$$

		Democrats	
		Compromise	Refuse
	Compromise	α,β	δ,λ
Republicans	Refuse	λ,δ	ϵ^{Φ} , ϵ^{Ψ}

A. The Short Run

As long as:

- $-\lambda > \alpha > \delta > \epsilon^{\Phi}$ for Republicans
- $-\lambda > \beta > \delta > \epsilon^{\Psi}$ for Democrats

We continue to have:

		Democrats	
		Compromise	Refuse
	Compromise	α,β	δ,λ
Republicans	Refuse	λ,δ	ϵ^{Φ} , ϵ^{Ψ}

B. The Long Run

Because of our dynamic payoffs

There will come a game N at which:

$$-\epsilon^{\Psi} < \delta \text{ or } \epsilon^{\Phi} < \delta$$

But as $\Psi > \Phi$

$$\rightarrow \epsilon^{\Psi} < \epsilon^{\Phi}$$

Therefore: The republicans will be the first to reach

$$\varepsilon^{\Phi} < \delta$$

This brings an end to the shutdown And a new Nash Equilibrium [Compromise, Refuse] With payoffs : (δ, λ)

Predictions depict the actual unfolding of the US government shutdown crisis

Can it come as a lesson for political parties in the future?

QUESTIONS?

THANK YOU!