Stochastic Calculus - Exam

Paris Dauphine University - Master I.E.F. (272)

Jérôme MATHIS (LEDa)

December 2018. Duration : 2h.

No document allowed. Calculator allowed. Answers can be formulated in English or French.

Exercise 1 (4 pts). There are two periods, $t \in \{0, 1\}$. There are two assets. One non-risky asset (money that can be borrowed or lend) that returns r = 2% with discrete compounding at time 1. And one risky asset which is a stock of price $S_0 = 20$ at time 0. At date 1, there is either an upward or a downward move. The price of the stock is then either $S_1^u = 24$ or $S_1^d = 19$.

Suppose the market price of an European put option on the stock with strike $22 \in$ at time 0 is $2.25 \in$.

a) (2 pts) What should be the non-arbitrage price of the put option at date 0?

b) (2 pts) Construct an arbitrage portfolio that uses one unit of the put option.

Exercise 2 (7 pts) Consider a stock whose price starts at $S_0 = 100 \in$ and evolves according to a two-steps binomial tree where each upward (resp. downward) move increases (resp. decreases) the value by 4% (resp. by 5%). The risk-free interest rate is 2% and is continuously compounded. At date t = 0, a financial institution issues two derivatives that each matures at time t = 2.

According to the underlying contracts, the buyer of the first (resp. second) derivative has the right to buy one unit of the stock at time t = 2 (resp. at any time $t \in \{0, 1, 2\}$), for a price $1.5S_2 - 60$ (resp. $1.5S_t - 60$).

a) (1 pt) Draw the binomial tree that depicts the evolution of the stock price through time t, with $t \in \{0, 1, 2\}$.

b) (3 pts) Draw the binomial tree that depicts the evolution of the first derivative no-arbitrage price, denoted as E_t , through time t, with $t \in \{0, 1, 2\}$.

c) (3 pts) Draw the binomial tree that depicts the evolution of the second derivative no-arbitrage price, denoted as A_t , through time t, with $t \in \{0, 1, 2\}$.

Problem 3 (9 pts) Consider an option in Black-Scholes world that pays you $1 \in$ at maturity T if the price of the underlying asset S_T is higher than a given "strike price" K, and pays you $0 \in$ otherwise.

(a) (1 pt) Give the no-arbitrage price of the option at maturity, denoted as V_T^K .

(b) (4 pt) Give the no-arbitrage price of the option at the date of issuance, denoted as V_0^K .

(c) (1 pt) Deduce from the previous answer the no-arbitrage price of the option at any date $t \in (0,T)$, denoted as V_t^K .

(d) (3 pt) Consider now an option in Black-Scholes world that pays you $1 \in$ at maturity T if $K_1 < S_T \leq K_2$, pays you $2 \in$ if $S_T > K_2$, and pays you $0 \in$ otherwise, where K_1 and K_2 are two given "strike prices", with $0 \leq K_1 < K_2$. Give the no-arbitrage price of the option at maturity, denoted as $W_T^{K_1,K_2}$, and the no-arbitrage price at any date $t \in (0,T)$, denoted as $W_t^{K_1,K_2}$.